Exercise 2

Find the linearization $L(x)$ of the function at a.

$$
f(x)=\sin x, \quad a=\pi / 6
$$

Solution

Start by finding the corresponding y-value to $x=\pi / 6$.

$$
f(\pi / 6)=\sin \frac{\pi}{6}=\frac{1}{2}
$$

Then find the slope of the tangent line to the function at $x=\pi / 6$ by computing $f^{\prime}(x)$,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(\sin x) \\
& =\cos x,
\end{aligned}
$$

and plugging in $x=\pi / 6$.

$$
f^{\prime}(\pi / 6)=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}
$$

Now use the point-slope formula to obtain the equation of the line going through $\left(\frac{\pi}{6}, \frac{1}{2}\right)$ with slope $\sqrt{3} / 2$.

$$
\begin{gathered}
y-f(\pi / 6)=f^{\prime}(\pi / 6)(x-\pi / 6) \\
y-\frac{1}{2}=\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right) \\
y-\frac{1}{2}=\frac{\sqrt{3}}{2} x-\frac{\pi \sqrt{3}}{12} \\
y=\frac{\sqrt{3}}{2} x-\frac{\pi \sqrt{3}-6}{12}
\end{gathered}
$$

Therefore, the linearization of the function $f(x)$ at $a=\pi / 6$ is

$$
L(x)=\frac{\sqrt{3}}{2} x-\frac{\pi \sqrt{3}-6}{12}
$$

Below is a plot of the function and the linearization at $a=\pi / 6$ versus x.

