Exercise 2

Find the linearization L(x) of the function at a.

$$f(x) = \sin x, \quad a = \pi/6$$

Solution

Start by finding the corresponding y-value to $x = \pi/6$.

$$f(\pi/6) = \sin\frac{\pi}{6} = \frac{1}{2}$$

Then find the slope of the tangent line to the function at $x = \pi/6$ by computing f'(x),

$$f'(x) = \frac{d}{dx}(\sin x)$$

$$=\cos x$$
,

and plugging in $x = \pi/6$.

$$f'(\pi/6) = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

Now use the point-slope formula to obtain the equation of the line going through $(\frac{\pi}{6}, \frac{1}{2})$ with slope $\sqrt{3}/2$.

$$y - f(\pi/6) = f'(\pi/6)(x - \pi/6)$$
$$y - \frac{1}{2} = \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right)$$
$$y - \frac{1}{2} = \frac{\sqrt{3}}{2} x - \frac{\pi\sqrt{3}}{12}$$
$$y = \frac{\sqrt{3}}{2} x - \frac{\pi\sqrt{3} - 6}{12}$$

Therefore, the linearization of the function f(x) at $a = \pi/6$ is

$$L(x) = \frac{\sqrt{3}}{2}x - \frac{\pi\sqrt{3} - 6}{12}.$$

Below is a plot of the function and the linearization at $a=\pi/6$ versus x.

